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Motivation

• Incorporate CFD into all aspects of

turbomachinery design and analysis

- Incorporate optimization techniques

- Reduce design cycle time

• Characterize the unsteady and time-averaged

flow fields:

- Provide unsteady loads for

structural/thermal analyses

CORSAIR



Corsair- I

• Corsair - 3D CFD code for analysis of

turbomachinery components

- 14 years of development

- Doug Sondak (Boston University) co-author

• Wildcat is the 2D version of Corsair

• Available free from NASA

Corsair- II

• Time-dependent equations of motion

- Full Navier-Stokes, thin-layer Navier-Stokes or
Euler

- Variable fluid properties (Cp, gamma) as a
function of P, T

• Third-order spatial discretization of inviscid fluxes

- Roe

• Second-order spatial discretization of viscous fluxes

- Standard central differences

• Second-order temporal accuracy



Corsair- III

• Multi-block O-H grid topology

- O-grids around airfoils and in tip clearance

regions

- H-grids for remainder of flow field and

nozzles

- Well-suited for parallel simulations

• Grid Motion

- Arbitrary translation/rotation

- Blade vibration

Corsair- IV

Turbulence models

- Highly-modified Baldwin-Lomax model

- Two-equation models (2D only)

Transition models

- Abu-Ghannam and Shaw

- Mayle

- Roberts
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Corsair- V

Boundary conditions

- Steady and unsteady inlet and exit

- Specified wall temperature or heat flux

- Film cooling/mass injection

- Symmetry, part-span shrouds

- Actuator disk

- Component linking (cavities, etc.)

Corsair- VI

Parallel simulations

- MPI used for coarse-grain decomposition

• decomposition by blade row or passage

• decomposition by O- and H-grids

• decomposition by component

° user specified decomposition

- OpenMP used for fine-grain

decomposition
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Corsair- VII

Miscellaneous capabilities

- Internal error checking

- Conjugate heat transfer capability

- Provides unsteady pressure files for stress

analysis

- Comprehensive design page

- Will run on Unix, Linux or Windows NT

platforms

Design and Analysis of

A Two-Stage Supersonic
Turbine

12
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Design Process
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Two-Stage Supersonic Turbine

Baseline CFD Analysis

Ist Vane

_ 1st Blade

Optimized CFD Analysis

Optimized Blade Rows

Current improvement in turbine eff_ency is 1l points. This could
be traded for approximately 230 ° R in twbine inlet temperature or

-2.25 seconds of lsp, or a combination of the two.
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Two-Stage Supersonic Turbine
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Experimental Apparatus
Type Total

Sleadlhslate pressure _ :
i emperaue TI
Fluctuatingpreesums:

lUstageblade 30

casing a
Accelerometem 4

Speed 2

TPOTurbine 1st.91JgeBlade Models -
Blades 1Amd2 of 8
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Flow in a Partial-Admission

Supersonic Turbine
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Simplex Partial-Admission Turbine

--Simplex supersonic-turbine

-Straight centedine nozzles (6 nozzles,'95 rotors)

•FuU-Admission simulation

-1 nozzle and 8 rotors modeled, 1.3 million grid points

•Partial-Admission simulation

--6 nozzles and 95 rotors modeled, 7.1 million grid points

-1+ revolutions

•Flow conditions

-Mr--0.25, Ptt=801 psia, Tt1=799 R, PtllP3=I5

--Operating fluid is GOX in engine, N 2 in rig experiments

• Computational resources

-17-38 MPI processes on 450 MHz SGI 02000 processors

-1-30penMP threads

-3x1041 see/grid point/iteration using 38 MPI process, 10penMP thread
19

Simplex Partial-Admission Turbine

2O
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Instantaneous Mach Number

FULL ADMISSION PARTIAL ADMISSION
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Unsteady Pressure Envelopes
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Unsteady Pressure Traces- Midspan ,_
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Pressure Decomposition- Midspan
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Unstead_._. y Integrated Forces
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Flow in a (',cntrifugal

Pump Stage
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.__ Grid for Centrifugal Stage

Unsteady Pressure w/o Splitters
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Unsteady Pressure w/Splitters
Dimensional Pressure in psia = Non-Dimensional Pressure x 105
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SSME Flow Liner/Inducer

Simulations
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SSME LH2 Feed System
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SSME LH2 Feed System
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SSME LH2 Feed System
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LH2 Flow Liner Slots
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Feedline and BSTRA

Liner Details
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Slots

View from Upstream
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Feedline and BSTRA

Upper (compression) Wall !_i_-- .......

Instantaneous velocity

Lower (expansion) wall
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Shedding vortices
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Feedline and BSTRA

Close-up in region of BSTRA
60.000

20.000

Instantaneous velocity
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Feedline and BSTRA
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flow

BSTRA wakes

Instantaneous velocity
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___ Feedline and Inducer

Instantaneous velocity
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Feedline and Inducer
|
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Inducer Simulation w/slots, cavity

Outline of cavity

Static pressure (psig)
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Instantaneous Time-Averaged

(1 revolution)
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Inducer Simulation w/slots, cavity

Statiepressurein cavity(psig)
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Upstream Edge of Downstream Cavity
J , i , i •

Raw traces [ I-- r,._.,-u,,..u¢,,_..,.._ I

xl . i , ! i I ' o,0o4o a.oo! ' _ i o._ '

Pressure difference

m

_.,

, o-, _,- , o- .
Time (u_c)

29.9 deg phase difference

Decomp of

pressure difference

Tm 0¢c)

lllllHnn
(Hz)

44

22



_J

Inducer Simulation w/slots, cavity

Velocity ma[_itud¢ (fffsec)
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Inducer Simulation w/slots, cavity

Time-averaged (over 1 rev) velocity magnitude (ft/sec)
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Adjacent Liner Mid-Cavity

46

23



Inducer Simulation w/slots, cavity

Time-averaged velocity magnitude (ft/sec)
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Adjacent Bellows Mid-Cavity
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Extent of Inducer Pressure Field

35 psig pressure iso-surface colored by axial velocity

New Inlet Location [ ....
-59 00_/
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Extent of Inducer Backflow

Axial velocity=-5 ft/sec iso-surface colored by pressure
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Extent of Inducer Backflow

Extent of backflow

varies with inducer

design, but in most
cases extends one

or more duct diameters

upstream. The backflow

also generates pre-swirl

in the flow approaching
the inducer.

Extent of backflow

5O
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Future Directions
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Current Work and Future Plans

• "All-speed" version of Corsair (Phantom)

- Reformulate equations without perfect gas assumption

- Primitive variable formulation

- Tabular fluid properties or compute based on equation of
state

- Sensors to switch between incompressible (pre-

conditioning) and compressible physics

Dual time stepping to replace Newton iterations for time

accuracy

• Two-phase flows

• Cavitation modeling.

- Necessary for accurate pump/inducer design and analysis
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